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Analysis of Hybrid Field Problems by the
Method of Lines with Nonequidistant
Discretization

HEINRICH DIESTEL AND STEPHAN B. WORM

Abstract —The method of lines, which has been proved to. be very
- efficient for calculating the characteristics of one-dimensional and two-
dimensional planar microwave structures, is extended to nonequidistant
discretization. By means of an intermediate transformation it is possible to
maintain all essential transformation properties that are given in the case of
equidistant discretization. The flexibility of the method of lines is increased
substantially. As a consequence, the accuracy is improved with reduced
computational effort.

I. INTRODUCTION

SUCCESSFUL DESIGN of planar microwave cir-
cuits presupposes accurate knowledge of the char-
acteristics of the elementary components.

In principle, an exact determination of the characterls-
tics of passive components like transmission lines, resona-
tors, and filters is possible by means of complete Fourier
series expansions. For numerical evaluation, only a finite
number of terms can be taken into account. Hence, this
method is characterized by the fact that the exactly for-
mulated problem is solved apprommately
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A completely different way is taken by the grid-point
method and the method of lines [1], where the approxi-
mately formulated problem is solved exactly.

The semi-analytical method of lines has been applied to
various problems of physics [2]. An essential extension of
this method is given in {3] for the one-dimensional and in
[4] for the two-dimensional hybrid problem of planar
waveguides. It has been shown that this class of waveguides
can be solved accurately and in a simple manner. -

In the limiting case of an infinite number of lines,
exactly the same solution'is obtained as in the limiting case
of an infinite number of terms in the Fourier series expan-
sions.

The relative convergence phenomenon which is a conse-
quence of the Fourier series truncations, does not occur
with the method of lines. Optimum convergence is always
assured, if the simple condition is satisfied that the strip-
edges are located at definite positions with respect to the
adjacent ¢*- and Y lines [5]. Tt should be noted, however,
that the convergence of the propaga‘uon constant, the
characteristic impedance’ or the resonant frequency does
not critically depend on the edge parameters, so that the
problem of conveérgence on the whole is not critical.
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This is the main advantage of the method of lines for
planar structures.

In order to satisfy correctly the edge condition for each
edge of a given waveguide and to satisfy in addition the
lateral boundary conditions, an appropriate number of
lines has to be determined. It is obvious that this problem
becomes more difficult with an increasing number of con-
ductors. A further deficiency of the method is given by the
fact that, in case of extreme differences in the widths of the
conductors and the spacings between them, the total num-
ber of lines increases considerably.

The reason for these drawbacks lies in the inflexibility of
the equidistant discretization.

In the present paper, it will be shown that the non-
equidistant discretization, which has been applied success-
fully in the grid-point method, can also be introduced in
the method of lines without changing its special transfor-
mation properties. An outline of the method will be given
for the one-dimensional nonequidistant discretization. The
extension of this method to two-dimensional problems
does not cause any difficulties: the procedure is similar to
that given in [4].

Numerical results are presented for two selected exam-
ples: the coplanar waveguide (one-dim. discretization) and
the hair-pin resonator (two-dim. discretization). The con-
vergence behavior is discussed and comparisons are made
with the limiting case of equidistant discretization.

II. FORMULATION

The cross-section of the structure is subdivided into
several partial areas, as indicated in Fig. 1. Within each
area, constant permittivity is assumed. Conducting strips
of vanishing thickness are located at the interfaces between
the areas.

The electromagnetic field components E and H are
derived from two independent vector potential functions,
which in each case exhibit only one component in z-direc-
tion

E=v XV X(¥%)/joc—v x(¥)

(1)
)
The harmonic time dependence exp( jwt?) has been omitted
for brevity.

For waveguides uniform in the direction of propagation

(z-direction), the two scalar functions of the vector poten-
tials can be expressed as

Yool =g, y)exp (- jBz)
where 8 is the propagation constant.
Substituting (3) in the corresponding Helmholtz equa-
tions for the scalar potential functions yields
2.1e,h 2.1e,h
Yy + Yy
ay? dx?
with k% = @’ e e
The potential functions are submitted to homogeneous
Dirichlet or Neumann conditions on the shielding (and

H=v x(¥%)+v x v x(¥",)/jop,.

3)
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Fig. 2. Position of the discretization lines for the scalar potentials
and Y"; e, and h, designate interval sizes.

symmetry) walls, Continuity conditions have to be satisfied
at the boundaries between the different areas.

Because of strip-conductor edges, the electromagnetic
fields exhibit singularities. Hence, a discrete representation
is chosen along the interfaces (x-direction), whereas in the
vertical direction the fields are expressed analytically. This
means that the potential functions ¢ and y”" are consid-
ered on lines, as illustrated in Fig. 2.

The shifting of the two sets of lines with respect to each
other is a necessary condition for the compatibility of the
operators applied in the following. As a consequence of the
shifting, both the lateral boundary conditions and the edge
condition fit in harmoniously.

The sizes of the intervals intersected by the discretization
lines for ¢¢ and y” are denoted by e, (i =1,---, N,) and #,
(i=1,---, N,), respectively.

In order to obtain symmetric second-order operators,
normalized potential functions are introduced next

¢ =ye: /iy (52)

and

o =yh,/hy; (5b)

where & represents the interval size of the limiting case of
equidistant discretization.

In matrix notation, (5a) and (5b) lead to the following
equations:

ve=lrle (6a)

and

¥ =[nlé" (6b)

with

[r]=diag(/n/e,),  [r,]=diag(Jh/R,). (7)
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It should be noted that the vectors and the matrices with
the subscripts e and # are of order N, and N,, respec-
tively. The finite-difference expression for the first deriva-
tive of ¢° with respect to the x-direction is evaluated on
the discretization line for ¢”. Hence, on the line for 7,
marked in Fig. 2, the first derivative of ¢° is approximated
as follows:

e
dx

~ ¢t+1 \Pe
3 ®)

i i

After normalization, this becomes

o7 (w98 | pm v ©)
or, in matrix notation
N
(170 25| = 11019
=[n[D1l]¢
= [D]é (10)

In the case of equidistant discretization, characterized by
the relation h, = e, = h for all i, the bidiagonal matrix [ D, ]
is identical to the difference operator [ D], which is given in
[4] for the various combinations of lateral boundary condi-
tions. For the combination magnetic/electric wall of Fig.
2, one obtains the following square matrix:

On account of the dual lateral boundary conditions and
the shifting of lines, the finite-difference translation for the
first derivative of y” can be given immediately

(11)

-

(17 0 22| = DY R = - [0]F

(12)

Combining the first-order operators, one obtains for the
second-order derivatives

- —
_ a 82 4 , >,
R LN LAE
(13a)
- -
- 9" 9% -
R e B e A Ak

(13b)
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The second-order operators
[D&]=-[2])[D]

[Di]=-[D D] (14)
are real-symmetric tridiagonal matrices. Thus, they can be

transformed by orthogonal transformation into the diago-
nal form of their real and distinct eigenvalues

[Z)[ DT ]=[N]
and

(7.1 [DL]17] = [¥] (15)

where [T,] and [7},] are the matrices of the eigenvectors. It
can be proved that the bidiagonal first-order operator [ D, ]
is transferred to quasi-diagonal form by the following
transformation [6]:

[7,)'[D][T.]= [3]. (16)
From (14) to (16), the following relations are derived:

[x]=-[38][8]

and
[A*]=—[8][8]". (17)

In case of different lateral boundary conditions (magn.
wall/el. wall, and vice versa) [8] is a square diagonal
matrix and (17) is reduced to

[X]=[N]=-[8]" (18)
The eigenvalues and the matrices of the eigenvectors in
(15) are determined by means of the ‘Implicit @L-method’
[7], an accurate and numerically stable method.

Only in the limiting case of equidistant discretization,
these quantities are given in analytical form.

The partial differential equations (4) can now be trans-
ferred to the following systems of ordinary differential
equations:

d?.Ve h
dy*

+ ([N /m + (k2= B2)) =" =0 (19)

with Peh= (T, .62 ", The solutions Ve and V", respec-
tively, of these one-dimensional Helmholtz equations cor-
respond to the simple transmission line equations.

The boundary conditions at the top and the bottom
shielding, as well as the matching of the fields at the
interfaces, can be carried out using only diagonal matrices.
An inhomogeneous matrix equation is obtained:

(]| 2 |=| . (20)
J.X Ex

where ( - x) represents the transformed current distribu-

tion and (Ez, Ex) the transformed tangential electric field
at the interfaces.
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Normalized phase constant S8/k, versus frequency for the

Fig. 3.
fundamental mode of the coplanar waveguide; @... [8].
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Fig. 4. Convergence behavior of the propagation constant as a function
of the interval size A’ for the center conductor; structural data as in
Fig. 3, /=10 GHz, a =7 mm, s =2 mm.

From (20), a reduced matrix equation in the original
domain is derived:

J E
[zel|Z] =] =o (21)
Jx strip Ex strip

The propagation constants are found from the correspond-
ing determinantal equation. By the Gaussian algorithm,
one obtains the current distributions, which represent the
current densities per interval. A simple multiplication yields
the current density per unit length

L=eJ

tYzi

Jo="hJ,

Yxr

(22)

III. REsSuLTS AND DISCUSSION

The method presented has been applied to the coplanar
waveguide. In Fig. 3, the dispersion characteristics are
given for different slot-widths and distances of the lateral
shielding. As can be seen, the propagation constant is
mainly determined by the slot-width. However, in the
lower frequency range and for decreasing slot-width, the
influence of the lateral shielding cannot be neglected.

The convergence behavior of the propagation constant
as a function of the smallest interval size is illustrated in
Fig. 4. Equidistant and nonequidistant discretization have
the same curve of convergence (drawn curve), as long as
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Fig. 5. Distribution of the electric field in the slot and the surface
current on the strips at f =10 GHz for the coplanar waveguide. The
values from the nonequidistant discretization are given by dots (N, =18),
those from the equidistant discretization are located on the drawn
curves (N, =57); J,/J. =14, E /E, =14
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Fig. 6. Discretization lines for the hair-pin resonator (top view); + for
*lines, ® for /"-lines; 4’ = 0.42 mm (cf. Fig. 8).

the discretization between the symmetry wall and the outer
slot-edge is equidistant. The discretization of the remaining
distance ‘a’ has only little effect. However, if in the above-
named region of high field concentration a nonequidistant
discretization is chosen, the curve of convergence changes;
for the dashed curve, the interval size at the outer edge is
twice that near the symmetry wall. At the marked points,
the total number of Y*-lines, needed for half the wave-
guide, is indicated. The numbers at the drawn curve refer
to the equidistant case.

Finally, the distribution of the electric field in the slot
and of the surface current on the strips is depicted in Fig.
5. The discretization corresponds to that of the dashed
curve in Fig. 4. Near the strip-edges the fields vary rapidly,
so that a fine discretization is chosen there. Exterior to
these regions of high energy concentration, the functions
are smooth. Hence, a coarse discretization is adequate. The
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Fig. 7. Resonant frequency of a hair-pin resonator versus the stub
length L, for dufferent spacings s.

ta,su
s

22

A
-

2, 7
-

4 R

e B/ IM

Fig. 8. Convergence behavior of the resonant frequency as a function of
the interval size A’ at the open end of the resonator; --- parabolic
interpolation, cubic interpolation; structural data as in Fig. 7,
L,=2mm, s=1 mm. :

tick-marks on the x-axis indicate the positions of the
Y*-lines (Fig. 5(a)) and of the ¢”-lines (Fig. 5(b)), respec-
tively, which are shifted to each other. The corresponding
values for the field components (dots) deviate only slightly
from the more accurate values of the drawn curves, which
are calculated by the equidistant discretization.

The advantages of nonequidistant discretization become
particularly evident for two-dimensional problems. In Fig.
6, the pattern of lines for a hair-pin resonator is shown. As
the results depend mainly on the accurate incorporation of
the edges, fine and equidistant discretization is chosen in
the vicinity of the contour. Exterior to the conductor, the
fields are evanescent and smooth, so that a coarse discreti-
zation is advantageous. Inside the bordered region, 55
y*lines are located. The equidistant discretization, h = h’,
would need 629 y*-lines without giving more accurate
results.

The computation time depends on the total number of
lines, in particular on the number of lines that pass through
the conducting structure and that determines the order of
the reduced matrix (cf. (21)). By nonequidistant discreti-
zation, the computational effort can be reduced by a factor
4---10, compared with the effort in case of equidistant
discretization according to {4].

For different spacings ‘s’ the resonant frequency as a
function of the stub length is shown in Fig. 7.
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Fig. 8 gives the convergence behavior of the resonant
frequency. As illustrated in the detail, the parameter ‘p,’
determines the spacing between the y”-lines and the con-
ductor at the open end of the resonator. The (marked)
results that correspond to 4= 0.42 mm are obtained with
the pattern of lines from Fig. 6. For 4’ less than 0.17, all
results are within the margins of error of 0.5 percent. It has
to be emphasized that an equidistant discretization would,
in this range of interval sizes, overstress even large com-
puters.

The two sets of curves represent parabolic (dashed) and
cubic (drawn) curves of interpolation, respectively. In case
of parabolic interpolation, for each ‘p,” only three values of
the interval size 4" are taken into account. For verification,
a fourth value is calculated with finer discretization. As can
be recognized, these points are located fairly well on the
corresponding curves of interpolation., The extrapolated
results of the dashed curves are in good agreement.

In case of cubic interpolation, all marked points of each
‘p,’-value are included. The extrapolated results, which are
also in good agreement, differ less than 0.5 percent from
those of the parabolic curves.

IV. HiINTS FOR COMPUTATION

As has been mentioned above, the discretization should
follow the change of the field components. In the vicinity
of conductor-edges, equidistant and fine discretization is
adequate. Exterior to these regions, the interval sizes may
increase. In order to obtain a uniform error distribution for
the two scalar potentials, successive interval sizes should
not differ too much.

This is easily achieved, if at first the sub-intervals be-
tween the y*-lines and the /-lines are determined, e.g., as
a geometrical series where the quotient of successive sub-
intervals is a constant ‘g’, and after that the y*-lines and
the y"-lines are assigned alternately. Each interval size, e,
or h,, is composed of two sub-intervals.

The advantages of the geometrical series ate easily shown:
if the conductor-width of the coplanar waveguide (detail of
Fig. 3) is designated by ‘a’ and the size of the sub-interval
at the strip-edge by ‘#,’, the following relation holds:

g" -1
qg-—1
where ‘M’ is the sum of the ¢*- and the y"-lines between

the edge and the lateral shielding.
The quotient ‘g’ should not exceed the range 1 < g <1.5.

a=h,

V. CONCLUSIONS

The method of lines as presented in this paper is highly
adapted to planar waveguide problems. As the accuracy of
the solutions mainly depends on the incorporation of the
fields near the strip-conductor edges, the discretization
should be fine in these regions. Exterior to the contours the
fields are smooth, so that a coarse discretization is ade-
quate. A development of the method to the inhomogeneous
(source-type) waveguide problem, as presented in [9] for
equidistant discretization, is possible. The difficulty of
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positioning the sources in a sufficiently large distance from
discontinuities is reduced considerably.

In principle, the method presented includes the possibil-
ity for calculating planar stripline structures, where the
permittivity of the substrate is given by € =¢(x). In that
case, the partial differential equations for the scalar poten-
tials are of the Sturm—Liouville type [6].
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Short Papers

High-Order Mode Cutoff In Rectangular Striplines

CLAUDE M. WEIL, MEMBER, IEEE, AND LUCIAN GRUNER,
MEMBER, IEEE

Abstract —The higher order mode cutoff characteristics of rectangular
stripline structures, with thin center conductors, are discussed. Data are
given, using an alternative method of presentation, on the normalized
cutoff of the first eleven higher order modes. Discussions are included on
the physical reasons why cutoff is altered for some modes, relative to that
in rectangular waveguides, but not for others.

I. INTRODUCTION

Large-scale rectangular strip-transmission lines containing a
_propagating transverse electromagnetic (TEM) field are now
widely used for such purposes as electromagnetic susceptibility
and emissions testing, calibration of field probes and survey
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meters, and studies on the biological effects of radiofrequency
(RF) radiation exposure. These structures are characterized by an
air dielectric and a thin center conductor (septum) surrounded by
a rectangularly shaped shield. This provides for an optimally
sized test space within the line in which equipment, field probes,
or experimental animals, etc., are exposed to a well-defined and
reasonably uniform field. Crawford [1] has discussed the proper-
ties of such lines and has described a family of TEM “cells”
constructed at the National Bureau of Standards. These devices
are commercially available and have been termed “Crawford
Cells” or “TEM Transmission Cells” by their manufacturers.
The usable frequency range of these devices is of obvious
importance to those involved in their use. Whereas it had been
thought that these structures could not be used above the cutoff
frequency where the first higher order mode is predicted to occur
[2], it has recently been shown by Hill [3] that such is not
necessarily the case. In his important study, Hill has shown that
significant perturbation of the internal fields within the structure
exists primarily at certain discrete frequencies where resonances
of the higher order mode fields occur. Such resonances will occur
when the equivalent electrical length of the strip-transmission line

0018-9480 /84 /0600-0638$01.00 ©1984 IEEE



