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Analysis of Hybrid Field Prc)blems by the
Method of Lines with Non.equidistant

Discretization

HEINRICH DIESTEL AND STEPHAN B. WORM

Abstract —Tfte method ,of tines, which has been proved to be very

efficient for calculating the characteristics of one-dimensional and two-

dimensional planar microwave structures, is extended to nonequidistant

discretizatiom By means of an intermediate transformation it is possible to

maintain all essential transformation properties that are given in the case of

equidistant discretization. The flexibltity of the method of lines is increased

substantially. As a consequence, the accuracy is improved with reduced

computational effort.

I. INTRODUCTION

A SUCCESSFUL DESIGN of planar microwave cir-

cuits presupposes accurate knowledge of the char-

acteristics of the elementary components.

In principle, an exact determination of the characteris-

tics of passive components like transmission lines, resona-

tors, and filters is possible by means of complete Fourier

series expansions. For numerical evaluation, only a finite

number of terms can be taken into account. Hence, this

method is characterized by the fact that the exactly for-

mulated problem is solved approximately.
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A completely different way is taken by the grid-point

method and the method of lines [1], where the approxi-

mately formulated problem is solved exactly.

The semi-analytical method of lines has been applied to

various problems of physics [2]. An essential extension of

this method is given in [3] for the one-dimensional and in

[4] for the twodimensional hybrid problem of planar

waveguides. It has been shown that this class of waveguides

can be solved accurately and in a simple manner. ~

In the limiting case of an infinite number of lines,

exactly the same solution is obtained as in the limiting case

of an infinite number of terms in the Fourier series expan-

sions.

The relative convergence phenomenon, which is a conse-

quence of the Fourier series truncations, do% not occur

with the method of lines. Optimum convergence is always

assured, if, the simple condition is satisfied that the strip-

edges are located at definite positions with respect to the

adjacent *’- and $~-lines [5]. It should be noted, however,

that the convergence of the propagation constant, the

characteristic impedancp or the resonant frequency does

not critically depend on the edge parameters, so that the

problem of convergence on the whole is not critical.
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This is the main advantage of the method of lines for

planar structures.

In order to satisfy correctly the edge condition for each

edge of a given waveguide and to satisfy in addition the

lateral boundary conditions, an appropriate number of

lines has to be determined. It is obvious that this problem

becomes more difficult with an increasing number of con-

ductors. A further deficiency of the method is given by the

fact that, in case of extreme differences in the widths of the

conductors and the spacings between them, the total num-

ber of lines increases considerably.

The reason for these drawbacks lies in the inflexibility of

the equidistant discretization.

In the present paper, it will be shown that the non-

equidistant discretization, which has been applied success-

fully in the grid-point method, can also be introduced in

the method of lines without changing its special transfor-

mation properties. An outline of the method will be given

for the one-dimensional nonequidistant discretization. The

extension of this method to two-dimensional problems

does not cause any difficulties: the procedure is similar to

that given in [4].

Numerical results are presented for two selected exam-

ples: the coplanar waveguide (one-dim. discretization) and

the hair-pin resonator (two-dim. discretization). The con-

vergence behavior is discussed and comparisons are made

with the limiting case of equidistant discretization.

II. FORMULATION

The cross-section of the structure is subdivided into

several partial areas, as indicated in Fig. 1. Within each

area, constant permittivity is assumed. Conducting strips

of vanishing thickness are located at the interfaces between

the areas.

The electromagnetic field components ~ and ~ are

derived from two independent vector potential functions,

which in each case exhibit only one component in z-direc-

tion

-E=Vx vx(’3Gzz)/j6x -vx(w%z) (1)

R=v X( ’FeZz)+v X vX(@Z, )/jc+o. (2)

The harmonic time dependence exp ( jot) has been omitted

for brevity.

For waveguides uniform in the direction of propagation

(z-direction), the two scalar functions of the vector poten-

tials can be expressed as

T“’=$’h(x,y)exp(- j~z) (3)
where ~ is the propagation constant.

Substituting (3) in the corresponding Helmholtz equa-

tions for the scalar potential functions yields

d2+e, h + d2$e,h

+(kz–pz)+=’h=o
ayz ax 2

(4)

with k2 = U2poCoe.

The potential functions are submitted to homogeneous

Dirichlet or Neumann conditions on the shielding (and
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Fig, 1. Cross section of a planar microwave structure.
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Fig. 2. Position of the discretization lines for the scalar potentials +’

and #h; e, and h, designate intervaf sizes.

symmetry) walls. Continuity conditions have to be satisfied

at the boundaries between the different areas.

Because of strip-conductor edges, the electromagnetic

fields exhibit singularities. Hence, a discrete representation

is chosen along the interfaces (x-direction), whereas in the

vertical direction the fields are expressed analytically. This

means that the potential functions $’ and ~h are consid-

ered on lines, as illustrated in Fig. 2.

The shifting of the two sets of lines with respect to each

other is a necessary condition for the compatibility of the

operators applied in the following. As a consequence of the

shifting, both the lateral boundary conditions and the edge

condition fit in harmoniously.

The sizes of the intervals intersected by the discretization

lines for +; and ~~ are denoted by et (i= 1,” “ “, N.) and h,
(~=l,... , Nh ), respectively.

In order to obtain symmetric second-order operators,

normalized potential functions are introduced next

$; ’fllj: (5a)

where r? represents the interval size of the limiting case of

equidistant discretization.

In matrix notation, (5a) and (5b) lead to the following

equations:

P=[re17’ (6a)

and

with

[r,] =diag(~), [r,] =diag(m). (7)
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It should be noted that the vectors and the matrices with

the subscripts e and h are of order N, and N~, respec-

tively. The finite-difference expression for the first deriva-

tive of !’ with respect to the x-directionis evaluated on

the discretization line for +fi. Hence, on the line for +?,

marked in Fig. 2, the first derivative of +’ is approximated

as follows:

(?$’ _ $;+1–4;

ax i– hi “
(8)

After normalization, this becomes

or, in matrix notation

[01

[+)

-1 ~~
+ [~hl[~l~

= [q]?. (lo)

In the case of equidistant discretization, characterized by

the relation h,= e,= h for all i, the bidiagonal matrix [DX]

is identical to the difference operator [D], which is given in

[4] for the various combinations of lateral boundary condi-

tions. For the combination magnetic/electric wall of Fig.

2, one obtains the following square matrix:

[\]

–1 1

[D] = (11)

1“

–1

On account of the dual lateral boundary conditions and

the shifting of lines, the finite-difference translation for the

first derivative of ~h can be given immediately

[+)a+h ~[r,]-’ hm -[r=] [D] ’[rh]~h=-[DX]’~’.

(12)

Combining the first-order operators, one obtains for the

second-order derivatives

[re]-’

[i-h]-’

.,,& -+–[Dx]’[Dx]~
ax2

(13b)

The second-orcler operators

[D; X]=-[DX]’[DX]

[D;x]=-[Q][%]’ (14)

are real-symmetric tridiagonal matrices. Thus, they can be

transformed by orthogonal transformation into the diago-

nal form of their real and distinct eigenvalues

[Te]’[D;x][Te]= [N]

and

[TJ[Dq[Th]=[A’] (15)

where [T=] and [ Tk ] are the matrices of the eigenvectors. It
can be proved that the bidiagonal first-order operator [D,]

is transferred to quasi-diagonal form by the following

transformation [6]:

[Th]’[Dx][Te]= [8]. (16)

From (14) to (1 6),

and

the following relations are derived:

[A’]=-[ii]’[tl]

[N]=-[8][(3]’. (17)

In case of different lateral boundary conditions (magn.

wall/cl. wall, and vice versa) [8] is a square diagonal

matrix and (17) is reduced to

[A’] =[A’]=-[i3]2. (18)

The eigenvalues and the matrices of the eigenvectors in

(15) are determined by means of the ‘Implicit QL-method’

[7], an accurate and numerically stable method.

Only in the limiting case of equidistant discretization,

these quantities are given in analytical form.

The partial differential equations (4) can now be trans-

ferred to the following systems of ordinary differential

equations:

~2@,h

—+([wq/h2+ (kw32))P’h =0
dy2

(19)

with ~’h = [Te h lf~’h. The solutions ~ and ~h, respec-

tively, of these ‘one-dimensional Hehnholtz equations cor-

respond to the simple transmission line equations.

The boundary conditions at the top and the bottom

shielding, as well as the matching of the fields at the

interfaces, can be carried out using only diagonal matrices.

An inhomogeneous matrix equation is obtained:

[1[1[21;=;

x x

(20)

where (~, ~X) represents the transformed current distribu-

tion and ( ~z, l?X) the transformed tangential electric field

at the interfaces;
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Fig. 4. Convergence behavior of the propagation constant as a function
of the interval size h‘ for the center conductor; structural data as in
Fig. 3,~=10GHz, a=7mm, $=2 mm.

From (20), a reduced matrix equation in the original

domain is derived:

II [1[z(p)] ; = :’ =0. (21)

x Strip x Strip

The propagation constants are found from the correspond-

ing determinantal equation. By the Gaussian algorithm,

one obtains the current distributions, which represent the

current densities per interval. A simple multiplication yields

the current density per unit length

~, = elJzl

J:, =hJ 1 xl. (22)

111. RESULTS AND DISCUSSION

The method presented has been applied to the coplanar

waveguide. In Fig. 3, the dispersion characteristics are

given for different slot-widths and distances of the lateral

shielding. As can be seen, the propagation constant is

mainly determined by the slot-width. However, in the

lower frequency range and for decreasing slot-width, the

influence of the lateral shielding cannot be neglected.

The convergence behavior of the propagation constant

as a function of the smallest interval size is illustrated in

Fig. 4. Equidistant and nonequidistant discretization have

the same curve of convergence (drawn curve), as long as
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Fig. 5. Distribution of the electric field in the slot and the surface
current on the strips at j’= 10 GHz for the coplanar waveguide. The
values from the nonequidistaut discretization are given by dots ( N, = 18),

those from the equidistant discretization are located on the drawn
curves (Ne = 57); JZ/’JI = 14, E./E, = 14.
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Fig, 6. Discretization lines for the hair-pin resonator (top view); + for

~e-lines, ● for @-lines; h’= 0.42 mm (cf. Fig. 8).

the discretization between the symmetry wall and the outer

slot-edge is equidistant. The discretization of the remaining

distance ‘a’ has only little effect. However, if in the above-

named region of high field concentration a nonequidistant

discretization is chosen, the curve of convergence changes;

for the dashed curve, the interval size at the outer edge is

twice that near the symmetry wall. At the marked points,

the total number of rje-lines, needed for half the wave-

guide, is indicated. The numbers at the drawn curve refer

to the equidistant case.

Finally, the distribution of the electric field in the slot

and of the surface current on the strips is depicted in Fig.

5. The discretization corresponds to that of the dashed

curve in Fig. 4. Near the strip-edges the fields vary rapidly,

so that a fine discretization is chosen there. Exterior to

these regions of high energy concentration, the functions

are smooth. Hence, a coarse discretization is adequate. The
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Fig. 8. Convergence behavior of the resonant frequency as a function of
the interval size h‘ at the open end of the resonator; --- parabohc
interpolation, — cubic interpolation; structural data as in Fig. 7,
L,=2 mm, s=l mm.

tick-marks on the x-axis indicate the positions of the

~’-lines (Fig. 5(a)) and of the ~~-lines (Fig. 5(b)), respec-

tively, which are shifted to each other. The corresponding

values for the field components (dots) deviate only slightly

from the more accurate values of the drawn curves, which

are calculated by the equidistant discretization.

The advantages of nonequidistant discretization become

particularly evident for two-dimensional problems. In Fig.

6, the pattern of lines for a hair-pin resonator is shown. As

the results depend mainly on the accurate incorporation of

the edges, fine and equidistant discretization is chosen in

the vicinity of the contour. Exterior to the conductor, the

fields are evanescent and smooth, so that a coarse discreti-

zation is advantageous. Inside the bordered region, 55

~e-lines are located. The equidistant discretization, h = h’,

would need 629 $’-lines without giving more accurate

results.

The computation time depends on the total number of

lines, in particular on the number of lines that pass through

the conducting structure and that determines the order of

the reduced matrix (cf. (21)). By nonequidistant discreti-

zation, the computational effort can be reduced by a factor

4.”” 10, compared with the effort in case of equidistant

discretization according to [4].

For different spacings ‘s’ the resonant frequency as a

function of the stub length is shown in Fig. 7.
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Fig. 8 gives the convergence behavior of the resonant

frequency. As illustrated in the detail, the parameter ‘pe’

determines the spacing between the +k-lines and the con-

ductor at the opon end of the resonator. The (marked)

results that correspond to k’= 0.42 mm are obtained with

the pattern of lines from Fig. 6. For h’ less than 0.17, all

results are within the margins of error of 0.5 percent. It has

to be emphasized that an equidistant discretization would,

in this range of interval sizes, overstress even large com-

puters.

The two sets of curves represent parabolic (dashed) and

cubic (drawn) curves of interpolation, respectively. In case

of parabolic interpolation, for each ‘p,’ only three values of

the interval size h‘ are taken into account. For verification,

a fourth value is calculated with finer discretization. As can

be recognized, these points are located fairly well on the

corresponding curves of interpolation., The extrapolated

results of the dashed curves are in good agreement.

In case of cubic interpolation, all marked points of each

‘p= ’-value are included. The extrapolated results, which are

also in good agreement, differ less than 0.5 percent from

those of the parabolic curves.

IV. HINTS FOR COMPUTATION

As has been mentioned above, the discretization should

follow the change of the field components. In the vicinity

of conductor-edges, equidistant and fine discretization is

adequate. Exterior to these regions, the interval sizes may

increase. In order to obtain a uniform error distribution for

the two scalar pc)tentials, successive interval sizes should

not differ too much.

This is easily alchieved, if at first the sub-intervals be-

tween the r) ’-lines and the ~k-lines are determined, e.g., as

a geometrical series where the quotient of successive sub-

intervals is a constant ‘q’, and after that the $’-lines and

the rjfi-lines are assigned alternately. Each interval size, e,

or h,, is composed of two sub-intervals.

The advantages of the geometrical series are easily shown:

if the conductor-width of the coplanar waveguide (detail of

Fig. 3) is designated by ‘a’ and the size of the sub-interval

at the strip-edge by ‘h,’, the following relation holds:

~=~ #-1
eq–l

where ‘M’ is the sum of the +’- and the tjh-lines between

the edge and the [ateral shielding.

The quotient ‘q’ should not exceed the range 1< q <1.5.

V. CONCLUSIONS

The method of lines as presented in this paper is highly

adapted to planar waveguide, problems. As the accuracy of

the solutions mainly depends on the incorporation of the

fields near the strip-conductor edges, the discretization

should be fine in these regions. Exterior to the contours the

fields are smooth, so that a coarse discretization is ade-

quate. A development of the method to the inhomogeneous

(source-type) waveguide problem, as presented in [9] for

equidistant discretization, is possible. The difficulty of
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positioning the sources in a sufficiently large distance from

discontinuities is reduced considerably.

In principle, the method presented includes the possibil-

ity for calculating planar stripline structures, where the

permittivity of the substrate is given by c = c(x). In that

case, the partial differential equations for the scalar poten-

tials are of the Sturm-Liouville type [6].

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

B. P. Detttidowitsch, et al., Numerical Methods of Ana~sis, (in
German). Berlin: VEB-Verlag, 1968, ch. 5.
0. A. Liskovets, “The method of lines (Review): Dijferentsial ‘nye
Uravneniya, vol. 1, no. 12, pp. 1662–1678, 1965.
U. Schulz and R. Pregla, “A new technique for the analysis of the
dispersion characteristics of planar waveguides and its application to
micros trim with tuning septums,” Radio Sci., vol. 16, no. 6, PP.

1173-11$8, 1981. - -
S. B. Worm and R. Pregla, “Hybrid mode anafysis of arbitrarily
sha~ed ulanar microwave structures by the method of lines,” IEEE
Tra>s. ‘Microwave Theory Tech., vol. ” MTT-32, pp. 191-196, Feb.
1984.
U. Schulz, ” On the edge condition with the method of lines in planar
waveguides,” Arch. Elek. Ubertragung, vol. 34, pp. 176-178, 1980.

H. Diestel, “A method for calculating inhomogeneous planar dielec-

tric waveguides” (in German), Ph.D. thesis, Fernuniversitaet Hagen,
1984.
R. S. Martin and J. H. Wilkinson, “The implicit QL-algonthm,”

Numer. Math., vol. 12, pp. 377-383, 1968.
E. Yamashita and K. Atsuki, “Analysis of microstnp-like transmis-
sion lines by nonuniform discretization of Integral equations,” IEEE

Trans. Microwave Theo~ Tech., vol. MTT-24, pp. 195–200, Apr.
1976,

[9] S. B. Worm, “AnaIysis of planar microwave structures with arbitrary
contour” (in German), Ph.D. thesis, Fernuniversitaet Hagen, 1983.

Heirrrich Diestel was born in Haseffmne,

Germany, on April 16, 1952. He received the

Dipl.-Ing. degree from the Technical University

in Hannover, Germany, in 1978 and the Dr.-Ing.

degree from the Fernurtiversitaet in Hagen,
Germany, in 1984.

Since 1979, his research activities have been in
the area of planar waveguides for integrated
optics and planar microwave structures.

*

Stephan B. Worm was born in Bladel, the

Netherlands, in 1951. He received the M. SC. de-
gree from the Eindhoven University of Technol-

ogy, Eindhoven, the Netherlands, in 1978, and
the Ph.D. degree from the Fernuniversitaet in

Hagen, Germany, in 1983.

From 1978 to 1983, he was employed at the
Femuniversitaet, Hagen, where he was engaged
in theoretical investigations of the properties of
planar microwave structures. In 1983, he joined
Philius, Elcoma Division, where he is engaged in

the development of microwa~e tubes.
-.

Short Papers

High-Order Mode Cutoff b Rectangular Striplines

CLAUDE M. WEIL, MEMBER, IEEE, AND LUCIAN GRUNER,

MEMBER, IEEE

Abstract —The higher order mode cutoff characteristics of rectangular

stripline strnctnres, with thin center conductors, are discussed. Data are

given, using an alternative method of presentation, on the norrnafized

cutoff of the first eleven bigher order modes. Discussions are included on

the physicaf reasons why cutoff is aftered for some modes, relative to that

in rectangular waveguides, but not for others.

I. INTRODUCTION

Large-scale rectangular strip-transmission lines containing a

propagating transverse electromagnetic (TEM) field are now

widely used for such purposes as electromagnetic susceptibility

and emissions testing, calibration of field probes and survey

Manuscript received April 4, 1983; revised January 27, 1984.
C. M. Weil is with the Boeing Military Airplane Company, Mail Stop 40-35,

PO, Box 3707, Seattle, WA 98124.
L. Gruner is with the Department of Electrical Engineering, Monash Univer-

sity, Clayton, Victoria, Austratia 3168.

meters, and studies on the biological effects of radiofrequency

(RF) radiation exposure. These structures are characterized by an

air dielectric and a thin center conductor (septum) surrounded by

a rectangularly shaped shield. This provides for an optimally

sized test space within the line in which equipment, field probes,

or experimental animals, etc., are exposed to a well-defined and

reasonably uniform field. Crawford [1] has discussed the proper-

ties of such lines and has described a family of TEM “cells”

constructed at the National Bureau of Standards. These devices

are commercially available and have been termed “Crawford

Cells” or “ TEM Transmission Cells” by their manufacturers.

The usable frequency range of these devices is of obvious

importance to those involved in their use. Whereas it had been

thought that these structures could not be used above the cutoff

frequency where the first higher order mode is predicted to occur

[2], it has recently been shown by Hill [3] that such is not

necessarily the case. In his important study, Hill has shown that

significant perturbation of the internal fields within the structure

exists primarily at certain discrete frequencies where resonances

of the higher order mode fields occur. Such resonances will occur

when the equivalent electrical length of the strip-transmission line
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